Shape optimization of pedestals using artificial neural network
نویسندگان
چکیده
In this study, shape optimisation of steel pedestals are attempted using neural network. Considering different geometrical parameters, finite element analyses of pedestals are carried out. Using these results, a back propagation neural network is trained. Successfully trained networks is further used for shape optimisation of newer problems. Thus optimised pedestals are further validated with finite element analyses counterparts and found to be in close match.
منابع مشابه
Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملPSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...
متن کاملInverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملThe optimization of root nutrient content for increased sugar beet productivity using an artificial neural network
Conventional procedures are inadequate for optimizing the concentrations ofnutrients to increase the sugar yield. In this study, an artificial neural network(ANN) was used to optimize the Ca, Mg, N, K and Na content of the storage rootto increase sugar yield (Y) by increasing both sugar content (SC) and root yield(T). Data from three field experiments were used to produce a wide range ofvariati...
متن کاملShape optimization of impingement and film cooling holes on a flat plate using a feedforward ANN and GA
Numerical simulations of a three-dimensional model of impingement and film cooling on a flat plate are presented and validated with the available experimental data. Four different turbulence models were utilized for simulation, in which SST had the highest precision, resulting in less than 4% maximum error in temperature estimation. A simplified geometry with periodic boundary conditions is de...
متن کامل